

Institute of Techgronomy Software Engineering Program
Full Time

Course Packet

Introduction

The Institute of Techgronomy offers a competency-based certification program in the Software
Engineering field. The Institute of Techgronomy Software Engineering program will teach
students the scope of skills necessary to become a software engineer. Software engineering is
about building and 'engineering' software and the technical infrastructure that supports software
- everything from large and complex data sets to advanced algorithms. It is, at the core, about
solving problems and designing systems that function in the desired manner or that solves a
problem.

This program focuses on software engineering principles, as well as strong fundamentals in
data structures and algorithms. Learners will cover fundamental computer programming
concepts including arrays, strings, algorithms, pointers, hash data structures, and software
architecture, before moving on to focusing on front-end and back-end languages including
JavaScript, using the terminal, C, Assembly, Shell, virtual machines, sockets, C++ and object-
oriented programming, Elixir, network programming, Redis, and advanced algorithms and data
structures. Our projects include a focus on software architecture, object-oriented design, and
advanced back-end programming. Learners are also expected to complete 30-40 technical
interview role plays to prepare for real job interviews, and undergo resume and cover letter
reviews similar to peer code reviews. Overall, our Software Engineering program is designed to
train learners to Silicon Valley standards in software engineering with an emphasis on
structured problem solving, critical thinking, and extensive preparation for meeting employer
demands for entry-level jobs.

Students Will Learn...

■ Advanced algorithms
■ Advanced data structures and databases
■ C++/OOP
■ Elixir
■ Network Programming
■ Sockets
■ Shell Virtual Machines
■ Javascript
■ RESTful APIs, software architecture,
■ Structured problem solving and debugging,
■ Extensive use of industry-standard tools such as Git, IDEs, and terminal

commands.

What to Expect

A 12-month remote training program
Students will gain experience building and
developing software. By the time students
complete the program they will earn an
industry-standard certification in Software
Engineering from Institute of Techgronomy.

No tests, only projects.

Each focus of this program will involve
completing projects in teams as well
individually to ensure students are learning
and applying their knowledge.

Build apps and sites with groups and on
your own
Our projects include a focus on software
architecture, object-oriented design, and
advanced back-end programming. Work in
groups and complete individual portfolio
projects.

Showcase projects to recruiters

Students will showcase approximately 5 to
20 projects representing thousands of lines
of code for employers and interviews.

40-hour-per-week time commitment
Students will need to devote 40 hours a
week minimum in order to fully learn the
content necessary to pass the course and
become a data scientist.

Write ~100K lines of code across 20
projects
On average, students will write about
100,000 lines of code as they complete
exercises, software projects, and coding
challenges throughout the program. This
high-quantity coding means students
develop confidence in their code and
applied software architecture design and
implementation experience.

Interview training
As part of this program, students will
complete technical interviews to prepare
for job applications. Students will be
guided on how to navigate challenging
technical interviews including whiteboard
coding.

Materials required for this course

● Must have a high school diploma or GED equivalent

● Be fluent in conversational English

● Must be familiar with computer systems

● Must have a working computer, internet access, and basic calculator

● Familiarity with code is recommended

● 15+ hours a week to devote to coursework and projects

Technical Requirements & Specs

● A computer running a compatible web browser (see below)

● Stable Internet connection (video interaction is not available offline)

● Speakers/headphones, microphone, and web-camera to hear audio from a computer

(videos have subtitles as an alternative)

● Lessons can be completed on any desktop computer, smart phone, or tablet

Students will also need to ensure they have permission to download the Zoom app to the
computer (e.g., if using a loaner or shared computer such as in a library) Supported Web
Browsers Google Chrome and Firefox.

Performance will be suboptimal on Internet Explorer; Windows users should download Chrome
or use Microsoft Edge (included in Windows 10).

About Competency-based Learning (or Mastery-based Learning)

Our programs and learning methods use competency-based learning, meaning that the goal for
the learner is to become competent in a given skill, not to pass a test. They are expected to be
able to perform the skill as they would in a job, to an acceptable level, with confidence that they
are capable of doing the task.

Passing a test at 75% or even 95% or memorizing information is not reflective of what is
required to be a successful developer, analyst, or engineer.

What's important is being able to solve problems, work collaboratively, thinking critically all the
time as well as being able to identify and solve security issues quickly and effectively.

For example, in cybersecurity personnel, companies, and even countries and governments, do
not want employees who are 85% competent at their job: who wants to stop a hacker from
accessing only 85% of your information or database? No one - they should be completely
stopped. If cybersecurity training never pushes learners to be fully competent, how will they
suddenly become so on the job at a crucial time when they are expected to perform at full
competency? The same goes for things such as autopilot: being competent at computer
programming truly matters.

It's no surprise that employers prefer candidates who have gone through competency-based
training.

The Limits of Passive Learning

The learning curve is notoriously deceptive for learners, and can be incredibly costly for
employers. Learners tend to think that receiving a lot of information is equivalent to significant
learning, when in fact, learning by doing and through repetition is indicative of significant
learning.

Providing a series of lectures or even online videos provides information, but with a 10%
retention rate of passive learning, learners aren't actually competent or efficient at performing a
task related to the subject area. As a result, passive learning involves a steep learning curve on-
the-job, which costs employers in salary, low efficiency, and possibly worse with costly on-the-
job errors.

Here is a concrete example tied to coding. Companies use a version control system (VCS) for
managing code, and the vast majority use a Git system. Using Git repositories, however, is not
straightforward the first few times, especially when working in teams or groups. Since most
professional engineers and developers work in teams, knowing how to use Git in a group setting
is essential. Receiving an explanation of how to use Git is not sufficient. Learners need to
decide how to structure and name their branches of code (sub-sections within the larger code
repository), how to divide their work and unite their code, how to merge changes and additions
to the code, and how branch permissions actually function. Making an error here can be
extremely costly, up to all code and work is lost.

At Institute of Techgronomy, we want learners to make errors during our training programs, and
not on the job. Learning to use Git is an example of endless situations where learning by doing
results in a more competent employee than passive learning where much of the learning curve
is yet to be done.

Project-Based Learning

Project-based learning is an approach to how a person learns that involves providing projects or
problems that need to be solved, built, or created.

Learners use the problem as a launching point for researching new concepts, using trial and
error, building solutions and learning as they build, evaluating the options available, making
decisions about which solution to pursue, and more.

Active Learning
Project-based learning at its core focuses on the learner, not on an instructor or a professor or a
teacher delivering knowledge. Project-based learning and peer code reviews are part of active
learning: learners must actively participate, engage, and respond. This is different from passive
learning such as lectures, presentations, MOOCs, or watching online videos.

Active learning requires learners to analyze, evaluate, and create. The majority of our
curriculum is made up of projects which are essentially problems in the form of “build a solution
for XYZ.” As learners research, analyze, build, test, and fix, their engagement is through the roof
compared with passive learning and the retention rate is closer to 90% (compared to passive
learning at 5-10%).

The Project Based Learning Spectrum
Many other tech learning providers claim to do project-based learning, however, just because
their learners do one or two projects, it does not mean that they are doing project-based
learning.

Above shows a spectrum of project-based learning: any form of knowledge transmission by a
single source of truth (e.g. instructor or professor) takes away from the need to research,
analyze, or evaluate, meaning learners don’t build critical thinking or problem-solving skills. If
you aren’t solving problems but are asking for answers from an instructor, then you are hindered
in developing problem-solving skills and learning how to be resourceful.

One of the most important things you need to learn to future-proof yourself is how to learn:
unless you’re doing real-project-based learning, you will depend on someone else to provide
answers for you.

Peer Learning

Peer learning is how and why learners learn from their peers, whether it’s in a formal learning
context or not.

In today’s world, access to knowledge has changed and people are continually learning,
growing both their knowledge base and their skills base. In a work environment where projects
are king and collaboration is key, people have many more opportunities to learn from their peers
naturally as part of their work.

Learning from peers could come in the form of asking for help to debug, sharing useful
resources for a given project or exercise, peer code reviews that look at functionality and code
quality, or working on a project together and sharing different approaches to the same problem.
Peer learning has high engagement, is much more social and interactive, and more fun than
passive learning in a lecture.

Why Use Peer Reviews
Students learn in being reviewed and in reviewing, and are operating at the top four levels of the
skills pyramid. They must evaluate, analyze, think critically, and create ways to break the
submitted solution and construct tests. The peer review process naturally fosters 21st-century
skills. Project-based learning and peer code reviews are part of active learning: learners must
actively participate, engage, and respond. This is different from passive learning such as
lectures, presentations, MOOCs, or watching online videos.

The Peer Learning Spectrum
Many learning systems use a single source of truth or knowledge - a professor or an instructor -
as the person who provides answers to particular problems, system designs, or questions. This
discourages critical or analytical thinking and creativity.

In a peer learning system, having multiple sources of truth, in addition to significant knowledge
access via the internet, learners need to think critically about what is important and why,
possible solutions and why they would or would not be good choices, and different ways to
solve the same problem.

Using a peer code review system exposes learners to new ways of solving the same problem of
different architectures and code structures.

Peer Learning and the Learning Community
In giving and receiving peer reviews, students learn how to communicate about their work and
how to give and receive feedback. This is important for developing soft skills as well as
preparing for the workplace where peer reviews are generally part of tech jobs.

By participating as a reviewer and a reviewee, learners contribute to the overall learning
community. Reviewers also receive feedback from reviewees, providing motivation for reviewers
in a manner similar to what occurs in the workplace.

Similar to the process for reviewing academic articles, the peer review process is the evaluation
of submitted work by your peers who are competent in their field of knowledge. The peer review
process requires analysis, critical thinking, and creativity in order to evaluate submitted work.

The reviewee may have to explain what they have done and why, which helps them to develop
communication skills. Reviewers need to understand quickly and identify possible areas where
the submitted work does not meet project criteria, standards, or best practices.

TIPP - Technical Interview Preparation Program

Learners join our Technical Interview Preparation Program as they begin working on some of
their final projects in the data science track. Learners do 40+ technical interviews to prepare for
job applications.

Learners will play the role of both an interviewer and an interviewee as they complete 40 role
play situations. Interviewers are given the topic or challenge question as well as the answer to
the question in their documentation for each role play. Interviewees do not receive any
advanced information until they arrive at the interview where they must complete the challenge.
The point of interview practice is to develop specific skills in structured problem solving AND in
communication. Practicing the art of communicating your thoughts is vital to successful
interviews.

Learners are to treat the role play situations as real-life interviews, meaning you adhere to
professional practices, time requirements, and general interview guidelines.
Following the interview, interviewers will complete a review of the role play exercise, providing
helpful feedback for the interviewee.

This is one of the most unique elements of this program, as well as one of the most effective
interview training programs in industry.

Course learning objectives

● Upon successful completion of this course, a student will meet the following outcomes:
● Investigate the complexity of professional coding practices and comply with corporate

coding standards
● Demonstrate ability to recognize and reproduce software engineering best practices and

receive feedback
● Identify basic coding challenges and develop the corresponding problem solving skills to

resolve them

● Manage control flow in programming.
● Handle scalars (int, char, string).
● Apply memory address management.
● Demonstrate knowledge of basic Data structures (arrays).
● Apply the Agile methodology to manage a project by breaking it up into several phases.
● Establish and maintain a constant collaboration with stakeholders for continuous

improvement.
● Select, differentiate, and analyze professional web development tools, techniques, and

frameworks
● Demonstrate knowledge of industry best practices to be used to train others in their

implementation
● Develop problem-solving skills appropriate for a Software Engineer and determine best

solutions for evaluation and decision making applied to existing industry problems
● Use a professional code editor for building and debugging modern web and cloud

applications.
● Use the industry standard version control system for tracking changes in computer files

and coordinating work on those files among multiple users.
● Use a command line interface to interact with systems, control cloud based systems,

and launch development and testing environments.
● Implement best practices for peer code review.
● Design and customize responsive mobile-first sites with Bootstrap, mixing responsive

grid systems and extensive prebuilt components.
● Build user interface using efficient, and flexible JavaScript library.
● Compose complex UIs from small and isolated pieces of code called “components”

using ReactJS.
● Use web framework Flask to write web applications.
● Apply web security best practices, and efficiently use the framework to avoid common

mistakes.
● Create scalable web applications to be run in professional environments.
● Use open-source Python web framework (Django) for rapid and efficient development of

secure websites.
● Apply Object Oriented Mapper technologies and SQL.
● Apply fundamentals of software architecture to organize system components.
● Apply Agile methodology to manage a project by breaking it up into several phases.
● Establish and maintain a constant collaboration with stakeholders for continuous

improvement.
● Complete technical interview questions using the Question / Writing / Answering method

Course meeting schedule

Season Project Name Description

Preseason Bootcamp Javascript

Preseason My bouncing box

Preseason My css is easy

Preseason My first backend Build api that replies to
different routes, URL naming
structures

Season 1 Software
Engineering

Bootcamp C The coding environment,
using the terminal functions,
loop statements, types,
variables, pointers and
strings, arrays and pointers,
memory allocation/structures,
basic and more complex
algorithms, a nested loop with
if statements, advanced shell,
pipe, multiple commands, 2D
arrays and strings

Season 1 Software
Engineering

My PrintF Unlimited arguments,
conversion between types
and bases

Season 1 Software
Engineering

My LS Unix, architecture, folders
and files, sort algorithms,
makefile

Season 1 Software
Engineering

My Tar Create archive (zip), how
folders and files are made,
compliance with POSIX
architecture

Season 1 Software
Engineering

Readline String manipulation, read,
system call, using instructions
that are hardcoded into the
CPU

Season 1 Software
Engineering

My Blockchain Linked lists, graphs, parsing
of command line, creating a
graph that is the data
structure behind a blockchain
(linked list of linked list)

Season 1 Software
Engineering

Core War Creating virtual machine and
compiler that transforms code
from Assembly to binary,
create parser, create
compiler, create virtual
machine that executes binary
code

Season 2 Software
Engineering

Redis Class Recoding Redis in Ruby with
hash data structures

Season 2 Software
Engineering

CSS is easy I Basic CSS with flexbox

Season 2 Software
Engineering

ZSH Parsing, command line,
execution of command line,
Unix processes (forks and
piping)

Season 2 Software
Engineering

LibASM Redoing C library in
Assembly

Season 2 Software
Engineering

SQL Lite Redcoding a database and
implement an SQL parser
(Uses hash data structure)

Season 2 Software
Engineering

Malloc (Memory Allocation) Linked lists, hash tables or
trees to optimize memory
given to a user, speed of
execution of commands,
software for hardware areas

Season 2 Software
Engineering

Redis C, coding Redis database Q
value with features for hash,
command line interface

Season 2 Software
Engineering

My FTP Server-client sockets,
protocols, network
programming, asynchronous,
protocol FTP, file transfer,
protocols, network
programming, asynchronous,
protocol FTP, file transfer,
implementation of RFC

Season 2 Software
Engineering

My Curl Client Socket, protocols,
network programming, HTTP,
HTTP Header

Season 3 Software Bootcamp C++ Syntax, begin OOP, classes,

Engineering references, instances,
methods

Season 3 Software
Engineering

Abstract Virtual Machine Recode a simple virtual
machine in C++, heritage (a
concept within OOP), change
how you think about
programming, docker and
containers

Season 3 Software
Engineering

My Chat Client-server, connection
between servers, implement
RFC-MIRC, chat-room
management

Season 3 Software
Engineering

My Bsq Rule-based vs probability-
based algorithms

Season 3 Software
Engineering

My Bc Rule-based vs probability-
based algorithms

Season 3 Software
Engineering

My Mouse Rule-based vs probability-
based algorithms

Season 3 Software
Engineering

My System Admin Docker, install web server
with database, server that
delivers a website that has to
connect with a Postgre
Server

Season 3 Software
Engineering

My Rabbit MQ Elixir, syntax, functional
programming

Season 3 Software
Engineering

My Skype Client-server and transfer of
text, voice, and video via the
network, creation of binary
protocol, significant, use of
audio library and codec
library, building a large
project

Season 4 Software
Engineering

Open-source Project

Season 4 Software
Engineering

Final Project Kernel

What is Live Coding Session

Live coding is an event we host where we solve a coding problem in front of learners. The key
here is to share our thought process, and how we code. This live coding could be made by a
technical of Institute of Techgronomy or by another student of the community. These sessions
will happen once a week on Tuesday. Learners are informed about the project in advance so
they can prepare any questions or any blockers they had while building the project.

Structure: The session is a remote live video call that can last for 1 or 2 hours.

Goal: The goal is to make a concept easy to understand for learners, especially if they are
beginners, and share with them good practices.

What is Coding Collaboration Session

Coding collaboration sessions are designed to help students learn to work together. During
each session, students of all levels are divided into small groups to work on a timed challenge.
Each group will focus on a unique task and, at the conclusion of the session, will share their
learnings with the other groups. At the end of the meeting, there is also a quick “Skills Check''
quiz to present students with common terminology and questions that they may experience
during an interview. This quiz does not count towards the Institute of Techgronomy curriculum
as the question difficulty varies greatly and students are not expected to know all answers.
These sessions are held once a week on Thursday.

Goals:

● Improve teamwork and critical thinking skills
● Build presentation skills
● Expose students to common interview questions and terminology
● Build community among students

Timeline

● Break into small groups (3-4 students) and assign projects: 10 minutes
● Groups work alone in breakout rooms: 20 minutes
● Program Manager reviews current work: Approx 15 mins (5 min per group)
● Groups return to main call and share work: 10 min
● Students take Skills Check and leave call once completed: 5 min

Course assignments by week (spreadsheet of what to complete each
week)

Week Assignments By Week

1

Bootcamp JS - Quest 01 Bootcamp JS - Quest 04

Bootcamp JS - Quest 02

Bootcamp JS - Quest 03

2

Bootcamp JS - my moving box my levenshtein

Bootcamp JS - Quest 06 my spaceship

Bootcamp JS - Quest 07

3

My hamming DNA

My moving box realtime

My robot simulator

4

My bouncing box

My css is easy

My first backend

5

Project 1: Bootcamp C

Quest00

Quest01

6

Quest02

Quest03

Quest04

7

My Square

Quest05

Quest06

8

Quest07

Quest08

My Cat

9 & 10

My Christmas Tree

Project 2: My PrintF

11 - 12

Project 3: My LS

13 - 16

Project 4: My Tar

17 - 18

Project 5: Readline

19

Project 6: My Blockchain

20

Season 2 Software Engineering

Bootcamp Ruby

21

Bootcamp Ruby

My BSQ

22 - 23

My BSQ

24 - 25

My BC

26 - 27

My Mouse

28 - 30

My ZSH

31

My CSS is Easy

My SQLite

32 - 33

My Curl

34-36

My LibASM

37 - 41

My Malloc

42

Season 3 Software Engineering Season 3 Rust

Bootcamp C++ Bootcamp Rust Arc 1

43 - 44

My Abstract Virtual Machine My String

1 technical interview per week My Mastermind Rust

45 - 46

My FTP Bootcamp Rust Arc 2

1 technical interview per week My Ping Server

47 - 50

My Skype My Redis Client

1 technical interview per week My Redis Server

51

Season 4 Software Engineering

Project 23: Open-source Project

52

Project 23: Open-source Project

2 technical interviews

53 Project 24: Final Project

2 technical interviews

Attendance, Probation, and Leave of Absence

Attendance Policy

Institute of Techgronomy’s programs are designed to prepare students for a career in the
technology industry and are modeled after what a typical work day may look like. For a student to
be successful in this role, they must demonstrate responsibility and reliability. Employers define
this as punctuality, regular attendance, and consistent progress. It is expected that students
establish these good habits and attend each required Institute of Techgronomy meeting. Required
meetings depend on the student’s active program and will be communicated before their initial
start date. Students are also expected to be on-time and communicate any conflicts in advance
with their program manager. Repeated absences could result in disciplinary action, up to and
including dismissal from the program. Students must maintain at least a 75% daily attendance
record to be considered in good standing. Excused absences do not count towards this figure.
Falling below this level may lead to probation and the need to establish a working plan with the
student’s program manager.

Probation and Dismissal Policy

Institute of Techgronomy Silicon Valley reserves the right to discipline or dismiss any student
whose attendance, academic performance, or professional conduct does not meet the standards
established by our rules and regulations. A student may be placed on probation for consistently
failing to meet attendance or academic standards. Any student on probation must meet with their
program manager to establish a learning improvement plan before continuing their curriculum. A
student risks dismissal if they continue to not meet the guidelines established in their improvement
plan. Any student who has been dismissed may appeal the action within 15 days of the initial
dismissal. To file an appeal, a student must send an email to their program director or
administrator explaining their reasons or grounds for appealing their dismissal. In the event of
dismissal, all tuition through the current month will remain due. If a student has paid in advance,
funds outside of the current billing cycle will be returned within 30 days of dismissal.

Leave of Absence Policy

If a student would like to take a “Leave of Absence”, they must submit an email to their program
manager with their reason for request, expected return date and initial date of request. This does
not automatically ensure Institute of Techgronomy’s approval and is not considered valid until
approval has been granted. A leave of absence may not exceed 60 days and only one will be
granted for any given student during a 12-month rolling enrollment period. Upon approval, no
tuition is due until the student returns. The Student may resume the program at any time, but in
the event the student resumes the program before the expected return date, tuition fees become
payable. Upon return, the student must meet with their program manager to re-establish course
completion goals.

